
[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [347]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

SEQUENTIAL DATA MINING: EXPLORING THE REDUNDANT PATTERNS FROM

SEQUENCES TO MINIMIZE THE OVERALL PATTERNS
Mr. TamboliSuraj Mubarak*, Prof. Prabhudev Irabashetti, Prof. Sutar Mushtaq

M.E Computer(II), Computer Department, Vishwabharati Academy's College of Engineering,

Ahmednagar, Pune university,India(MH)

Assistant Professor, Computer Department, Vishwabharati Academy's College of Engineering,

Ahmednagar, Pune university,India(MH)

ABSTRACT
Recent studies in discovering patterns from sequence data have shown the significant impact in many aspects of data

mining. In this research, a novel method of finding the redundant pattern is proposed. To efficiently discover the

redundant pattern, the focus is on developing new algorithms. Rapid increase of the sequential data has created the

problem of discovering meaningful patterns from sequences. The most challenging problem is to find repeating

patterns with gap constraints. In this work, we identify a new research for mining the redundant patterns with gap

constraints. To solve the problem, we propose algorithm with components such as: (1) Data-driven pattern

generation approach to avoid generating unnecessary candidates for validation. (2) Back-tracking pattern search

process to discover approximate occurrences of a pattern under user specified gap constraints. (3) An Apriori-like

deterministic pruning approach to progressively prune patterns and cease the search process if necessary. It is

proposed to conduct experimental analysis on the synthetic and standard data sets. It is also proposed to conduct

comparative analysis of the developed algorithms with the state of art algorithms.

KEYWORDS: Data mining, Back-tracking, prune patterns, RedundantPatterns, CFI, Gap Constraint,Delta Closed

Pattern.

 Introduction
Sequence data are the significant data in many forms.

Discovering the patterns from the sequence data has

great value in many sectors but, the discovery of

patterns should be carried out in an efficient way. In a

number of sequential data mining applications, the

goal is to discover frequently occurring patterns.

Many algorithms have been proposed to discover the

sequential patterns producing large set of patterns

which are highly redundant. Recently mining and

analysis of sequence data has been studied in several

fields. Sequential pattern mining remains one of the

most important data mining tasks. With the ubiquity

of sequential data, it is found broad applications in

customer analysis, query log analysis, web click

stream, custom purchase history, event sequences,

financial stream data analysis and pattern discovery

in genomic DNA sequences in bioinformatics.Today

large amount of such data from genomic proteomic

and business arenas has been acquired. The discovery

of new interesting knowledge from these enormous

sequence data has important application and great

value in many sectors but the discovery process

needs to be carried out in an efficient and effective

way. Existing sequence mining algorithms mostly

focus on mining for subsequence’s. However the

large class of applications require efficient mining of

patterns that are not redundant. The work addresses

the problem of mining the patterns from the

sequences. We take multiple strings as input

sequences and substrings as patterns which are

referred to as contiguous patterns. Many algorithms

have been proposed to discover the frequent patterns.

Most of them overlook the output quality, producing

the large set of patterns and many of the patterns are

highly redundant.

Patterns have been used to implement efficient

systems that can recommend based on previously

observed patterns, help in making predictions,

improve usability of systems, detect events, and in

general help in making strategic product decisions.

There are various applications of sequential data

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [348]

mining in a variety of domains like healthcare,

education, Web usage mining, text mining, and Bio-

informatics, telecommunications, and intrusion

detection. The discovery of new interesting

knowledge from these enormous sequence data has

important application and great value in many sectors

but the discovery process needs to be carried out in

efficient and effective way. A major problem with all

the large genetic sequence databases is that records

are deposited in them from a wide range of sources,

from individual researchers to large genome

sequencing centers. As a result, the sequences

themselves, and especially the biological annotations

attached to these sequences, vary tremendously in

quality. Also there is much redundancy, as multiple

labs often submit numerous sequences that are

identical, or nearly identical, to others in the

databases.

Many annotations are based not on laboratory

experiments, but on the results of sequence similarity

searches for previously-annotated sequences. Of

course, once a sequence has been annotated based on

similarity to others, and itself deposited in the

database, it can also become the basis for future

annotations. This leads to the transitive annotation

problem because there may be several such

annotation transfers by sequence similarity between

particular database record and actual we

lab experimental information. Therefore, one must

always regard the biological annotations in major

sequence databases with a considerable degree of

skepticism, unless they can be verified by reference

to published papers describing high-quality

experimental data, or at least by reference to a

human-curated sequence database.

In item set mining [17] it is observed that frequent

itemset (FI) often containsredundancies.Thus,

closedfrequentitemsets (CFIs) [17] are proposed as a

conciserepresentation of FIs.Although CFIs contain

fewer redundanciesthan FIs, sometimes the definition

of the closureistoo restrictive and the compression is

fairly low as theyretain all the information.

Hence,CFIs are further extendedto the delta-tolerance

closed itemsets [18] aiming at giving amore concise

representation. Delta closed itemsets provide

acontrollable tight lossyapproximationto the closed

itemsets.By allowing tuneable tolerance in delta

closed itemsets, agreat number of redundant itemsets

are pruned whileimportant information is retained.

We employ the notionof delta closed itemset to

discover delta closed patterns fromsequences.So this

work explores the redundant patterns from the

sequential patterns to minimize the highly redundant

pattern from the overall pattern. To further shrink the

output size, many methods attemptto extract

statistically significant patterns from

frequentpatterns. The motivation is that frequent

expected patternsmight not be as interesting as

statistically unexpected orsignificant patterns.

Statistical significance is evaluatedthrough statistical

hypothesis test which measures howmuch the

frequency of a pattern deviates from the expectedone

given the random model. It is hoped that

patternsoccurring with significantly higher frequency

will correspondto the functional units inherent in the

sequences.Furthermore, the assessment of statistical

significance canhelp in ranking output patterns,

enabling experts to assess theresult. However, among

the statistically significant patternssome are actually

statistically redundant. They are consideredas

significant merely because they contain very

strongsignificant sub-patterns.The work presents two

efficient algorithms developed to discover non-

redundant patterns from sequences. One discovers the

delta closed patterns and other finds the number of

occurrences of the patterns from the given input

string. The suffix tree is used to efficiently identify

the proper super-pattern and sub-pattern and hence

are able to discover delta closed patterns.

LITERATURE SURVEY
Finding the delta closed nodes from sequences was

proposed by Wong, Zhuang[21], which finds the

delta closed patterns from the given input sequences.

Sequence synthesis and recognition of patterns for

multiple sequences was proposed by Chan and Wong

[14] in the early 1990s. Sequential pattern mining

was introduced by Agrawal and Srikant [15] and

many sequential pattern mining algorithms have been

developed. Sequential pattern mining can serve as the

general framework to mine frequent contiguous

patterns from multiple strings. GSP [19] and

PrefixSpan [20] are two representative

methodsforApriori-based and pattern-growth-based

approaches,respectively. Sequential pattern mining

can serve as thegeneral framework to mine frequent

contiguous patternsfrom multiple strings. We

nextintroduce the generalized suffix tree T, the

datastructure for representing strings. T can be

constructed in O(L) time with O(L) space complexity

via suffix array. Thedetails of the suffix tree and

suffix array and their lineartime and space

construction algorithms can be found in[16]. To use

T ingeniously we establish the connectionbetween

frequent contiguous patterns and the path labels. The

general input for sequentialpattern mining is

http://www.ijesrt.com/
http://en.wikipedia.org/wiki/Wet_lab
http://en.wikipedia.org/wiki/Wet_lab

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [349]

transaction sequences where each elementin a

sequence could contain multiple items. Multiple

stringscan be considered as the special input where

each sequenceelement only contains one item. Hence,

sequential patternmining algorithms can be directly

applied to such datawithout any modification.

However, sequential pattern isquite different from the

contiguous pattern considered here.There could be

any gap between two adjacent elements insequential

pattern while no gap is allowed in contiguouspattern.

Therefore, gap constraint is needed for

sequentialpattern mining algorithms to mine

contiguous patterns.Mining sequential patterns with

gap constraints is one of the recent focuses in

sequential pattern mining. The gap constraint often

implies strong correlations among pattern elements

and hence is important in many applications.

GenPrefixSpan [1] is one that mines sequential

pattern with gap constraint and can be used to

discover frequent contiguous patterns. Another recent

focus in sequential pattern mining is to mine the

complete set of closed sequential patterns instead of

frequent patterns, achieving a more compact yet

complete output set with better efficiency. A closed

pattern is defined as a pattern with no super pattern of

the same support. CloSpan [2] and BIDE [3] both

mine closed patterns based on PrefixSpan. Gap-BIDE

in [4] mines closed sequential patterns with gap

constraint and can hence be used to discover closed

contiguous patterns.

The authors in paper [5] discover association rules

that are unexpected by the prior knowledge

consisting of a set of beliefs. Surprising patterns are

obtained in time series database using Markov chain

as the random model [6]. Statistically significant

rules are mined in [7]. Unexpected sequential

patterns are discovered with respect to a given set of

beliefs [8]. The paper [9] presents a method of

mining surprising periodic patterns in sequence

database. Significance is assessed through swap

randomization in [10]. The paper [11] notices that

both closed frequent item set and its non-closed sub

item sets share the same level of statistical

significance and hence it is safe to remove non closed

item sets. Redundant patterns are identified as

unexpected rules that can be inferred from other

unexpected rules under monotonicity assumption

[12]. The Blanchette and Sinha [13] observed that

some significant sequence patterns are random

variations of other significant patterns and hence

redundant. They proposed a heuristic (Find-

Explanator) to extract non-redundant patterns using a

random model of order 3 Markov chain.

MEHODOLOGY
Sequence data may be Ordered set of elements such

as s = a1,a2,..an. Where each element ai could be

Numerical, Categorical i.e. domain a finite set of

symbols S, |S|=m, or Multiple attributes. In the

sequence data the length n of a sequence is not fixed

and the order determined by time or position and

could be regular or irregular.
The example of sequence data may be,

• Classical applications-

– Speech: sequence of phonemes

– Language: sequence of words and

delimiters

– Handwriting: sequence of strokes

• Newer applications-

Bioinformatics:

 Genes: Sequence of 4 possible nucleotides, |S|=4

 Example: AACTGACCTGGGCCCAATCC

 Proteins: Sequence of 20 possible amino-acids,

|S|=20

 Example:MAQQWSLQRLAGRHPQDSYEDST

Sequential pattern mining [2] methods have been

found to be applicable in a large number of domains.

Sequential data is omnipresent. Sequential pattern

mining methods have been used to analyze this data

and identify patterns.

Let Ʃ be a set of distinct elements {e1, e2, . . . ,e|Ʃ|}, Ʃ

is called the alphabet and |Ʃ| is itssize. A sequence s

over Ʃisan ordered list of elements, denoted as s1s2 .

. . sn, whereeachsiЄƩ.n is the length of S and S[i, j]

the substring of S.Each element here contains only an

item in contrast toelement of sequence used in

general sequential patternmining containing multiple

items.The sequence defined above is essentially a

string. Manyimportant sequences such as DNA

sequences can berepresented as strings.A contiguous

pattern P is defined as a short sequencep1p2 . . . pm

over Ʃ. m is the order (or the length) of thepattern.

The order of P should be at least 2 to make

itnontrivial. A pattern P`= a1a2 . . . am is a sub-pattern

ofanother pattern P = b1b2 . . . bm` or P a super-pattern

of P` ifthere exists an integer j such that ai = bj+Ifor 1

≤ i ≤ m. Forexample, ATCG is a super-pattern of

TCG and TCG is asub-pattern of ATCG. We say P

occurs at position i in S ifand only if P = S[i,i + m-1].

There might be multipleoccurrences of P which can

be represented through a list ofpositions LP= {i1,

i2…ik,}, where k is the number ofoccurrences of P in

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [350]

S.In general, the input data might come as

multiplesequences S1, S2,….,SN, with lengths n1, n2, .

. . ,nN, respectively.

Let L be the overall length (input size) of the

inputsequences. We define the number of

occurrences and thesupport of P in multiple

sequences as below,

1. Number of occurrences of P in multiple

sequencesS1, S2, . . . , SN.

The number of occurrences of P denoted by

kPinmultiple sequences is the sum of the number of

occurrences ineach sequence Si and the list of

positions becomes LP= {. . . ,(i, j),. . .} where (i, j) is

a position denoting that Poccurs at the position j in

the sequence i.

2. Support of P in multiple sequences S1, S2, . . . ,

SN.

The support of P denoted by qP in multiple

sequences is thenumber of sequences in which P

occurs at least once.

For example Let S1 = ATCGAT and S2 = TCGATC.

Thenumber of occurrences of AT and GATC is 3 and

1 withrespective position list {(1,1), (1,5), (2,4)} and

(2,3).Their support is 2 and 1 respectively.

In sequential pattern mining, frequent pattern is

definedover the support. The support of a

sequentialpattern is close to its number of

occurrences. Here in order to deal with long

sequences that maycontain multiple pattern

occurrences, we define frequentpattern over the

number of occurrences.

3. (Frequent Pattern) A pattern is said to

befrequent if its number of occurrences kP ≥

minocc, whereminocc specifies the minimum

number of occurrences required.

4. (Delta Closed Pattern) Given a set of

frequentpatterns, a delta closed pattern P is one

that does not haveany delta closed super-pattern

P` such that kp`≥ δ.kP, where δ is the tolerance

factor and 0 ≤ δ ≤ 1. In other words, P isnot

delta closed if it has a delta closed super-pattern

P` suchthatkP`≥ δ. kP.

Delta closed pattern is defined in a recursive way.

Thepattern with the highest order is by definition a

delta closedpattern as it does not have any super-

pattern. However, weavoid using nondelta-closed

patterns to check whetherother patterns are delta

closed or not because they areredundant patterns not

included in the output set. That is for example

Suppose we have a set of frequent patterns{ATCG,

ATC, TCG, TC, CG} with 15, 18, 15, 22,

20occurrences, respectively. With δ = 1, the set of

closedpatterns is {ATCG, ATC, TC, CG}. TCG is

not deltaclosed with respect to its super-pattern

ATCG which havethe same number of occurrences.

With δ = 0.8, the set ofdelta closed patterns is

{ATCG, TC, CG} as TCG and

ATC are not delta closed with respect to ATCG (i.e.,

15 ≥ 0.8*15 and 15 ≥ 0.8*18). Although TC has a

super-patternATC satisfying 18 ≥ 0.8*22, ATC is not

acandidate pattern for checking the delta

closednessofTC as ATC is not delta closedwith

respect to ATCG andnot included in the output.

ATCG is the only candidatepattern for TC. Hence,

TC is delta closed. CG is deltaclosed for the same

reason.

There couldbe several candidate patterns for

checking whether apattern P is delta closed or not.

Among them, we denotethe one with the largest

number of occurrences as theproper pattern for such

checking.

Suffix Tree

Suffix tree is the datastructure for

representing strings. Suffix tree can be constructed

inO(L) time with O(L) space complexity via suffix

array. The information of the suffix tree andsuffix

array and their lineartime and space construction

algorithms can be found in [16]. For making the use

of suffix tree ingeniously we establish the

connectionbetween frequent contiguous patterns and

the path labels.

Given a collection of multiple strings S1, S2,

. . . , SN over Ʃ, the generalized suffix tree T

representing them is arooted directed tree with the

following properties:

1. Each leaf node is labelled by a position (i, j)

indicatinga suffix of string Si starting at the position

j.

2. Each internal node has at least two outgoing

edgeseach of which is labeled with a nonempty

substringin the input strings. No two edges going out

of anode can have the edge label starting with the

samecharacter.

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [351]

Most often, a termination character $ is appended

toeach string to ensure that T exists for these multiple

strings.

The work is carried out that is generating the suffix

tree [2] on the sequential data.A suffix tree is a

fundamental data structure for string

searchingalgorithms. Unfortunately, when it comes to

the use ofsuffix trees in real-life applications [3], the

current methods forconstructing suffix trees do not

scale for large inputs.

In computer science, a suffix tree (also called PAT

tree or, in an earlier form, position tree) is a data

structure that presents the suffixes of a given string in

a way that allows for a particularly fast

implementation of many important string operations.

The suffix tree for a string S is a tree whose edges are

labeled with strings, such that each suffix

of S corresponds to exactly one path from the tree's

root to a leaf. It is thus a radix tree (more specifically,

a Patricia tree) for the suffixes of S. A suffix tree is a

special kind of a Trie.

Constructing such a tree for the string S takes time

and space linear in the length ofS. Once constructed,

several operations can be performed quickly, for

instance locating a substring in S, locating a substring

if a certain number of mistakes are allowed, locating

matches for a regular expression pattern etc. Suffix

trees also provided one of the first linear-time

solutions for the longest common substring problem.

These speedups come at a cost: storing a string's

suffix tree typically requires significantly more space

than storing the string itself.

The suffix tree for the string S of length ‘n’ is defined

as a tree such that:

 The paths from the root to the leaves have a

one-to-one relationship with the suffixes

of S,

 Edges spell non-empty strings,

 And all internal nodes (except perhaps the

root) have at least two children.

Since such a tree does not exist for all strings, S is

padded with a terminal symbol not seen in the string

(usually denoted $). This ensures that no suffix is a

prefix of another, and that there will be n leaf nodes,

one for each of the n suffixes of S. Since all internal

non-root nodes are branching, there can be at

most n − 1 such nodes,

and n + (n − 1) + 1 = 2n nodes in total (n leaves,n − 1

internal non-root nodes, 1 root).

Suffix links are a key feature for older linear-time

construction algorithms, although most new

algorithms, which are based on Farach's algorithm

[4][5], dispense with suffix links. In a complete

suffix tree, all internal non-root nodes have a suffix

link to another internal node. If the path from the root

to a node spells the string , where a single is

character and is a string (possibly empty), it has a

suffix link to the internal node representing .

A suffix tree for a string S of length n can be built

inθ(n) time, if the letters come from an alphabet of

integers in a polynomial range (in particular, this is

true for constant-sized alphabets). For larger

alphabets, the running time is dominated by

first sorting the letters to bring them into a range of

sizeO(n)in general, this takes O(n log n) time. The

costs below are given under the assumption that the

alphabet is constant.

Applications of suffix tree

Suffix trees can be used to solve a large number of

string problems that occur in text-editing, free-text

search, computational biology and other application

areas. Primary applications include

 String search, in O(m) complexity,

where m is the length of the sub-string (but with

initial O(n) time required to build the suffix tree

for the string)

 Finding the longest repeated substring

 Finding the longest common substring

 Finding the longest palindrome in a string

Suffix trees are often used

in bioinformatics applications, searching for patterns

in DNA or protein sequences (which can be viewed

as long strings of characters). The ability to search

efficiently with mismatches might be considered their

greatest strength. Suffix trees are also used in data

compression; they can be used to find repeated data,

and can be used for the sorting stage of theBurrows–

Wheeler transform. A suffix tree is also used in suffix

http://www.ijesrt.com/
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Suffix_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Patricia_tree
http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Substring
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://en.wikipedia.org/w/index.php?title=Farach%27s_algorithm&action=edit&redlink=1
http://en.wikipedia.org/wiki/String_search#Index_methods
http://en.wikipedia.org/wiki/Palindrome
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/w/index.php?title=Suffix_tree_clustering&action=edit&redlink=1

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [352]

tree clustering, a data clustering algorithm used in

some search engines.

Frequent Patterns in a suffix tree is a contiguous

pattern has its unique path inthe suffix tree, we need

to find a way to obtain its number ofoccurrences

which is important for defining frequentpattern. The

number of occurrences of a pattern is thenumber of

positions found under its path in the suffix tree.More

efficiently, we first store into eachnode x the number

of positions of k(x) in the subtree rooted byit. Then

the number of occurrences of P whose path ends ator

above node x can be easily obtained by k(x). Hence,

frequent patterns are represented by labels of paths

that end at or above a node x with k(x) ≥ minocc.

The suffix tree which we have constructed has an

advantage that it performs the fast searching of the

strings and the tree gives the various patterns from it.

MATHEMATICAL MODEL

Algorithm for Finding Delta Closed Patterns

Delta closed patterns are frequent patterns and hence

represented by path labels as well. However, the path

of a delta closed patterns does not end within an edge

but at a node. A pattern whose path ends within an

edge can be further extended by at least one character

to the right without decreasing the number of

occurrences and hence cannot be delta closed.

The algorithm contains various steps such as

constructing the generalized suffix tree ‘T’ for

whatever the input sequence given. After the tree is

generated finding the number of positions under each

node ‘x’ of ‘T’.

The suffix tree contains various patterns in it; also it

contains different frequent patterns. A pattern is said

to be frequent pattern if its number of occurrence i.e.

(kp) is greater than or equal to the minimum

occurrence. For defining the frequent patterns in a

suffix tree there is a need to find a way to its number

of occurrences. Number of occurrences of a pattern is

number of position found under its path in a suffix

tree. Position means all the leaf nodes under a node

(basically an internal node). We have to find the

position under each node x i.e. k(x). After finding the

position under each nodes extracting the set of nodes

whose k(x)>=Minocc

The next step is to find the position level of x, that is

number of characters found on a node called as pl(x).

And sorting the nodes in descending order according

to the length of pl(x).

After sorting the nodes in descending order taking

each node for the processing and checking whether it

is delta closed node or not. After processing a node

if it is found that the node is delta closed then the

patterns found on that node is also called as delta

closed patterns. For calculating a node as delta closed

or not first of all we have to find the cover node of it.

Cover node is the node which covers the given node

using the path labels. Let ‘y’ be the cover node of

‘x’.For example we have an input sequence which

contains an alphabets as {A, T, C, G} if the node v1

is to be processed and node v1 contains a string as

ATC, then checking the other node which contains

the string as GATC or TATC or AATC or CATC etc.

if any of the string from this is found on any node say

that node v3 contains the string as GATC then this

node v3 is called as the cover node of v1. From the

figure 1 the node v1 has the string as ATC, then by

adding any of the one character to the left of ATC

from the given input string and checking whether we

get any node in the tree, i.e. we can find the node

v6which contains the path labels as GATC, then this

node v6 is the cover node of v1.

Also we have to set the suffix node and the parent

node of x. The suffix node means suppose v6 has

path labels as GATC then by removing the first

character ‘G’ from the string GATC we get ATC

which is found on the node v1, so suffix node of v6 is

v1.

After that checking whether the node ‘x’ has cover

node or not, if it has no cover node then annotate ‘x’

as delta closed node. If ‘x’ has a cover node then the

pl(x) is delta closed if and only if k(y)<δ.k(x), if then

condition satisfies then annotate ‘x’ as delta closed

node else annotate ‘x’ as not delta closed. The value

of δ can be in the range as 0 ≤ δ ≤ 1.

Discovery of Delta Closed Patterns (DDCP)

Algorithm

1. Construct a Suffix Tree T for the Input Sequences

2. Annotate k(x) the number of positions under each

nodex of T

3. Extract a set of nodes whose k(x) ≥ minocc

4. Sort the above nodes in descending order

according tothe length of pl(x) using counting sort.

5. For each node x

a) Let y be the cover node of x

b) Let xs and xP be the suffix node and parent node

ofx, respectively

http://www.ijesrt.com/
http://en.wikipedia.org/w/index.php?title=Suffix_tree_clustering&action=edit&redlink=1
http://en.wikipedia.org/wiki/Data_clustering

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [353]

c) If x has no cover node

i. Annotate x as delta closed

d) Else

i. If pl(x) is delta closed (k(y)<δ*k(x))

Annotate x as delta closed

ii. Else

Annotate x as not delta closed

iii. End if

e) End if

6. End For

7. Output path labels of nodes annotated as delta

closed.

For the input string given in the Figure 1 after

applying the delta closed algorithm we get the

various delta closed nodes as v6, v7, v1, v4.

Algorithm for Finding the Redundancy of the

Delta Closed PatternsAfter the execution of the first

algorithm we get the various delta closed

patterns/nodes, these patterns are provided as an

input for the second algorithm. The second algorithm

then finds that how many times the delta closed

nodes are occurring in the given input string. It then

returns the node name and its number of occurrences

based upon the specified threshold value. The

threshold value is the numeric value which matches

with the length of the delta closed nodes and gives

the output with the string and the number i.e. its

number of occurrence of it. Also the discovery of

delta closed pattern algorithm and redundancy

finding algorithm find the redundant patterns with the

gap constraints.

The Threshold value is set which matches with the

length of the processing node or processing pattern

and gives the output as how many times the pattern is

occurring in the given input string.

For the second algorithm we have implemented the

steps to get the number of occurrences of node string

from the main string. For this purpose we took the

output of first algorithm that is the nodes which came

after checking for the delta nodes. We took the node

string (processing node) and created an array of

string by passing one single value, this is done

because C#.net does not allow direct string in system

defined string functions for that we need array. So we

created an array with single value that is a node

string. After that we used one string function named

as split, which splits the whole given string with

given character or string array. For this purpose we

have used 2 parameters, the first is our main given

string in textbox, and the second is the one array

created so that the split function returns me one array

of substring after that one condition is added where

we have checked whether the main string is starting

with the node string or not, if yes then split the result

array length is the number of occurrence for that node

string, if no then the split result array length -1 is a

number of occurrence for that node string. By this

way we get the number of occurrences of the pattern

in the given input string.

RESULTS AND DISCUSSION
Experimental Setup

Explain the machine configuration on which

experimentation is performed. Processor, RAM,

Software Tools used, etc….

Results

To calculate the performance of the algorithms, the

algorithm is tested on three different sets of input. It

uses real data sets to investigate the effect of δ and

the output quality of the algorithms. The first set

contains the number of characters 10 as an input

string, also the string contains gap into it. We have

handled the gap in two ways that is the first method

draws the tree by deleting the gaps from the given

input string, and the second method draws the tree by

considering the gaps into it. That is based upon the

gaps present into the tree, that much of different trees

are been drawn. The minimum occurrences is set to 2

and the δ value is set to 1, after that we get the

various delta closed patterns. Then these delta closed

patterns are provided as an input to the second

algorithm and the occurrences of these delta closed

patterns are found in it. Based upon the different

threshold value we get the different patterns and the

count of their occurrences. Similarly we have tested

the second set which contains the number of

characters as 100 as an input. Then we have

calculated the delta closed nodes and then the

redundancy of it. There are total four sets on which

the algorithms have been tested and we get the exact

output within less time. We have tested the result

based upon the time factor and recorded the time

required for the different sets, which are as follows,

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [354]

Table: Runtime Comparison on different sets

 Number of Characters

 10 100 500 1000

Creating

tree after

removing

spaces

from it

0.83659

91 sec

0.95412

78 sec

12.0773

87 sec

19.7910

042 sec

Creating

tree

based

upon the

spaces

0.80474

31 sec

2.10782

54 sec

6.58968

05 sec

25.1869

728 sec

DDCP

Algorith

m

0.91700

33 sec

0.90013

91 sec

5.49635

96 sec

9.41249

11 sec

Redunda

ncy

Algorith

m

0.80970

97 sec

0.90915

47 sec

3.78586

81 sec

6.74288

47 sec

The following graph shows the execution

time required for the generation of the suffix tree by

considering the spaces and by not considering the

spaces.

Graph 1: Combined graph for with space and without

spaces for different length dataset

It is seen that with the growing data sets, if the

sequential data set contains the gaps in it, then

creating the tree by removing the gaps takes less time

than the tree created by considering the gaps.

The following graph shows the execution time

required for the redundancy finding algorithm.

Graph 2: Execution time for Redundancy Algorithm for

different length dataset.

With growing dataset length, it isobserved that the

execution time for redundancy finding algorithm also

increases. The execution time is recorded in sec for

both the graphs.

RESULT SNAPSHOT

Fig. 1 Suffix Tree for the String S1= TCGATCGGATCTC

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [355]

Figure 2: Suffix Tree by Deleting Gap S1= ATTCTCACT

GCCCTCTATGC”

Figure 3: Suffix Tree by Considering Gap

S1=“ATTCTCACT GCCCTCTATGC

Figure 4: Based upon threshold value finding redundant

patterns.

CONCLUSION
This work gives the method of finding the delta

closed nodes and their redundancies for the sequence

patterns. The work presents the first algorithm that is

delta closed algorithm and second finding the

redundancies of the delta closed algorithm. Also the

use of suffix tree is made in an effective manner for

identification of the patterns effectively in the linear

time. Effectiveness of finding the redundant patterns

significantly decreases the runtime. The experiments

show the algorithms efficiencies as well as their

ability to find the redundant patterns in smaller set of

time.

ACKNOWLEDGEMENTS
We express great many thanks to

Prof.PrabhudevIrabashetti,forhisgreateffortofsupervisi

ngandleading ,toaccomplish thisfine work. Also I

thanks Prof. Salve B. S., for their help. To

collegeanddepartmentstaff,they were

agreatsourceofsupport andencouragement.To my

friendsand family, for theirwarm, kind encouragesand

loves. To every person gave ussomethingtoo light my

pathway,I thanks forbelievingin me.

REFERENCES

[1] C. Antunes and A.L. Oliveira,

“Generalization of Pattern-Growt Methods

for Sequential Pattern Mining with Gap

Constraints,” Proc. Int’l Conf. Machine

Learning and Data Mining, pp. 239-251,

2003.

[2] X. Yan, J. Han, and R. Afshar, “CloSpan:

Mining Closed Sequential Patterns in Large

Databases,” Proc. Third SIAM Int’l Conf.

Data Mining, pp. 166-177, 2003.

[3] J. Wang and J. Han, “BIDE: Efficient

Mining of Frequent Closed Sequences,”

Proc. 20th Int’l Conf. Data Eng., pp. 79-90,

2004.

[4] C. Li and J. Wang, “Efficiently Mining

Closed Subsequences with Gap

Constraints,” Proc. Eighth SIAM Int’l Conf.

Data Mining, pp. 313-322, 2008.

[5] B. Padmanabhan and A. Tuzhilin, “A

Belief-Driven Method for Discovering

Unexpected Patterns,” Proc. Fourth Int’l

Conf. Knowledge Discovery and Data

Mining, pp. 94-100, 1998.

[6] E. Keogh, S. Lonardi, and B. Chiu,

“Finding Surprising Patterns in a Time

Series Database in Linear Time and Space,”

Proc. Eighth ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining

(KDD), pp. 550-556, 2002.

[7] W. Hamalainen and M. Nykanen, “Efficient

Discovery of Statistically Significant

Association Rules,” Proc. IEEE Eighth Int’l

Conf. Data Mining, pp. 203-212, 2008.

[8] D.H. Li, A. Laurent, and P. Poncelet,

“Mining Unexpected Sequential Patterns

and Rules,” Technical Report RR-07027,

Laboratoired’Informatique de Robotiqueet

de Micro’electronique de Montpellier, 2007.

[9] J. Yang, W. Wang, and P. Yu, “InfoMiner:

Mining Surprising Periodic Patterns,” Data

Mining and Knowledge Discovery, vol. 9,

no. 2, pp. 189-216, 2004.

[10] A. Gionis, H. Mannila, T. Mielika¨inen, and

P. Tsaparas, “Assessing Data Mining

Results via Swap Randomization,” ACM

Trans. Knowledge Discovery from Data, vol.

1, no. 3, pp. 167-176, 2007.

[11] J. Li, G. Liu, L. Wong, “Mining Statistically

Important Equivalence Classes and Delta-

Discriminative Emerging Patterns,” Proc.

13th ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining, pp. 430-439,

2007.

http://www.ijesrt.com/

[Mubarak, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [356]

[12] B. Padmanabhan and A. Tuzhilin, “On

Characterization and Discovery of Minimal

Unexpected Patterns in Rule Discovery,”

IEEE Trans. Knowledge and Data Eng., vol.

18, no. 2, pp. 202-216, Feb. 2006.

[13] M. Blanchette and S. Sinha, “Separating

Real Motifs from Their Artifacts,”

Bioinformatics, vol. 17, suppl. 1, pp. S30-

S38, 2001

[14] S.C. Chan and A.K.C Wong, “Synthesis and

Recognition of Sequences,” IEEE Trans.

Pattern Analysis Machine Intelligence, vol.

13, no. 12, pp. 1245-1255, Dec. 1991.

[15] A.K.C. Wong, D.K.Y. Chiu, and S.C. Chan,

“Pattern Detection in Biomolecules Using

Synthesis Random Sequence,” J. Pattern

Recognition, vol. 29, no. 9, pp. 1581-1586,

1995.

[16] S. Aluru and P. Ko, “Lookup Tables, Suffix

Trees and Suffix Arrays,” Handbook of

Computational Molecular Biology, CRC

Press, 2006.

[17] N. Pasquier, Y. Bastide, R. Taouil, and L.

Lakhal, “Discovering Frequent Closed

Itemset for Association Rules,” Proc.

SeventhInt’l Conf. Database Theory, pp.

398-416, 1999.

[18] J. Cheng, Y. Ke, and W. Ng, “δ-Tolerance

Closed FrequentItemsets,” Proc. Sixth Int’l

Conf. Data Mining, pp. 139-148, 2006.

[19] R. Srikant and R. Agrawal, “Mining

Sequential Patterns: Generalizationsand

Performance Improvements,” Proc. Fifth

Int’l Conf.Extending Database Technology,

pp. 3-17, 1996.

[20] J. Pei and J. Han, “PrefixSpan: Mining

Sequential PatternsEfficiently by Prefix-

Projected Pattern Growth,” Proc. 17th

Int’lConf. Data Eng., pp. 215-224, 2001.

[21] Andrew K.C. Wong, Fellow, IEEE, Dennis

Zhuang, Gary C.L. Li, Member, IEEE,

andEn-Shiun Annie Lee “Discovery of Delta

Closed Patterns andNoninduced Patterns

fromSequences” IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA

ENGINEERING, VOL. 24, NO. 8, AUGUST

2012

Authors

Mr.Tamboli Suraj M..received his

B.E.degree in Computer Science

(FirstClass with Distinction)in the

year 2011 from BAMU, Aurangabad

and persuing in M.E.Degree in

ComputerEngineering

fromPuneUniversity.He has 04 years

of teaching experience at

undergraduate level.His reaserch lies

in Data mining.

Prof. Prabhudev Irabashetti

He is Currently working as Assistant

Professor in Department of Computer

Engineering of VACOE,

Ahmednagar,Pune University.His

reaserch lies in Data mining.

Prof. Sutar Mushtaq Shakil

He is Currently working as Assistant

Professor in Department of

Information Technology of

ADCOEAT,Ashta.His reaserch lies

in Data mining.

http://www.ijesrt.com/

